Data-Driven Decision-Making Algorithms
Last updated on
Jul 17, 2025

A main research direction for the AIR-DREAM Lab is to develop high-performance, robust, generalizable, and real-world deployable data-driven decision-making algorithms. We are specifically interested in offline policy learning methods, such as offline reinforcement learning (RL), offline imitation learning (IL), and offline planning, which enable a simulation-free and low-cost solution to address many real-world problems.